Edição em Português
    Espaço

    Temperatura das erupções do Sol ajuda a entender a natureza do plasma solar

    O movimento de rotação do Sol produz mudanças em seu campo magnético. E isso faz com que, a cada 11 anos aproximadamente, nossa estrela entre em uma fase de intensa atividade. Erupções na superfície do Sol (solar flares, em inglês) lançam para longe grande quantidade de partículas e liberam altos níveis de radiação.



    Imagem do Sol em ultravioleta, no comprimento de onda 17,1 nanômetros, na linha espectral do ferro ionizado. Crédito: Solar Dynamics Observatory/Nasa


    Durante as erupções, a liberação de energia aquece a cromosfera, causando a ionização quase completa do hidrogênio atômico presente nessa região. Mas, como o plasma é muito denso, a taxa de recombinação do hidrogênio também é alta. Em consequência, estabelece-se um processo recorrente de ionização e recombinação de hidrogênio, produzindo um tipo característico de emissão de radiação, na faixa do ultravioleta, chamado de “Contínuo de Lyman” (LyC). A denominação é uma homenagem ao físico norte-americano Theodore Lyman IV (1874-1954).

    Descrições teóricas sugerem que a chamada “temperatura de cor” do Contínuo de Lyman estaria associada à temperatura do plasma que originou a erupção. Dessa forma, a temperatura de cor poderia ser utilizada como um recurso para determinar a temperatura do plasma durante as tempestades solares.

    Um novo estudo simulou as emissões de dezenas de erupções diferentes. E confirmou a associação entre a temperatura de cor do Espectro de Lyman (LyC) e a temperatura do plasma da região onde a emissão é originada. Também confirmou que a região atinge um equilíbrio termodinâmico local entre o plasma e os fótons que compõem o LyC.

    O estudo teve apoio da FAPESP e a participação do brasileiro Paulo José de Aguiar Simões, professor da Escola de Engenharia da Universidade Presbiteriana Mackenzie e pesquisador do Centro de Radioastronomia e Astrofísica Mackenzie.

    As simulações corroboraram um importante resultado observacional obtido no Solar Dynamics Observatory pelo astrônomo argentino Marcos Machado. Este mostrou que a temperatura de cor, que nos períodos calmos se situa no patamar de 9 mil kelvins, sobe, nos flares, para a faixa dos 12 mil a 16 mil kelvins.

    A enorme quantidade de energia que provê a Terra com luz e calor é gerada principalmente pela conversão de hidrogênio em hélio. Tal processo de fusão nuclear ocorre no interior da estrela, mas essa vasta região é inacessível à observação direta, porque a luz não atravessa a “superfície” do Sol.

    “O que conseguimos observar diretamente situa-se da superfície para fora. E a primeira camada, que se estende até uns 500 quilômetros de altitude, é chamada de fotosfera. Sua temperatura é da ordem de 5.800 kelvins. É nessa região que aparecem as manchas solares, nos lugares onde os campos magnéticos emergentes do interior inibem a convecção, mantendo o plasma mais frio – o que produz a aparência escura das manchas”, informa Simões.

    Acima da fotosfera, a cromosfera estende-se por mais 2 mil quilômetros, aproximadamente. “Nessa camada, a temperatura aumenta, podendo chegar a mais de uma dezena de milhares de kelvins, e a densidade do plasma diminui. Devido a essas características, o hidrogênio atômico encontra-se parcialmente ionizado, com prótons e elétrons separados”.

    No topo da cromosfera, em uma fina camada de transição, a temperatura sobe abruptamente, passando de 1 milhão de kelvins, e a densidade do plasma cai muitas ordens de grandeza.

    Esse súbito aquecimento na passagem da cromosfera para a coroa é um fenômeno contraintuitivo, pois seria de esperar uma diminuição da temperatura com o aumento da distância em relação à fonte.

    “Ainda não temos uma explicação para isso. Diversas propostas foram apresentadas pelos físicos solares, mas nenhuma foi aceita sem reservas pela comunidade”, pontua Simões.

    A coroa estende-se rumo ao meio interplanetário, sem uma nova região de transição definida. Nela, a influência dos campos magnéticos é marcante, estruturando o plasma, especialmente nas chamadas regiões ativas, facilmente identificadas em imagens no ultravioleta. É nessas regiões ativas que as erupções solares ocorrem.

    “Nessas tempestades solares, a energia acumulada nos campos magnéticos coronais é liberada de forma repentina, aquecendo o plasma e acelerando as partículas. Os elétrons, por terem massa menor, podem ser acelerados a até 30% da velocidade da luz. Uma parte dessas partículas, que viajam ao longo das linhas de força do campo magnético, é lançada no meio interplanetário. Outra parte segue o caminho oposto, da coroa para a cromosfera – onde sofre colisões no plasma de alta densidade e transfere sua energia para o meio. Esse excesso de energia aquece o plasma local, causando ionização dos átomos. A dinâmica de ionização e recombinação origina o Contínuo de Lyman”, detalha o pesquisador.

    Os picos de atividade solar ocorrem em intervalos de aproximadamente 11 anos. Durante os períodos de alta atividade, os efeitos sobre a Terra são bastante nítidos: maior ocorrência de auroras boreais; blecautes nas comunicações por rádio; incremento do efeito de cintilação nos sinais de GPS; aumento da força de arraste em satélites, reduzindo suas velocidades e, consequentemente, a altitude de suas órbitas. O conjunto desses fenômenos, juntamente com as propriedades físicas do meio interplanetário próximo à Terra, é chamado de “clima espacial”. (José Tadeu Arantes/Agência FAPESP)

    10 DE ABRIL DE 2023



    VOCÊ TAMBÉM PODE ESTAR INTERESSADO EM

    Com o auxílio do Atacama Large Millimeter/submillimeter Array, uma equipa de astrónomos descobriu um vasto reservatório de gás quente no enxame de galáxias ainda em formação em torno da galáxia Teia de Aranha — trata-se da mais distante detecção de gás quente efectuada até à data.
    Os astrónomos detectaram vapor de água no disco de formação planetária situado em torno da estrela V883 Orionis. Esta água apresenta uma assinatura química que explica o percurso da água, desde as nuvens de gás onde se formam as estrelas até aos planetas, e apoia a ideia de que a água existente na Terra é ainda mais antiga do que o nosso Sol.
    A fibra óptica é uma estrutura maciça de vidro composta por uma parte externa, a casca, e uma interna, o núcleo. Ela comumente é utilizada nas telecomunicações, na transmissão de um feixe de luz de um ponto a outro com o mínimo de perda no caminho. Essas fibras podem também ter outras aplicações, como no sensoriamento de gases.
    Uma pesquisa que mobilizou 59 cientistas, vinculados a instituições de pesquisa de 14 países diferentes, relata a descoberta de um anel ao redor do objeto transnetuniano Quaoar.
    A Nasa anunciou a descoberta de um planeta com boas possibilidades de ser habitável.
    Pesquisa de astrônoma da USP em parceria com o Instituto de Astrofísica de Paris também revelou três estrelas em fuga ejetadas por explosões de supernovas.


    TAMBÉM EM LA CATEGORÍA «ESPAÇO»

    Nesta nova imagem infravermelha, podemos ver uma miríade de estrelas por trás do ténue brilho laranja da nebulosa Sh2-54.
    O lançamento faz parte de uma parceria entre o DCTA e a empresa sul-coreana INNOSPACE, com apoio da AEB/MCTI.
    No início deste ano, o Very Large Telescope (VLT) do ESO foi alertado depois que uma fonte incomum de luz visível foi detectada por um telescópio de rastreio.
    Com o auxílio de vários telescópios, incluindo o Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), os astrónomos descobriram um sistema com seis exoplanetas, cinco dos quais estão presos numa dança rítmica rara em torno da sua estrela central.

    © 1991-2024 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Termos de Uso
    Contact